16nm planar process CMOS SRAM cell design: Analysis of Operating Voltage and Temperature Effect

نویسندگان

  • Rohit Sharma
  • R. K. Chauhan
چکیده

Purpose: CMOS devices are scaling down to nano ranges resulting in increased process variations and short channel effects which not only affect the reliability of the device but also performance expectations. The SRAM design uses the smallest transistors possible and is also susceptible to reliability issues and process variations, making it an ideal benchmark circuit to compare the two technologies [1]. Low power static-random access memories (SRAM) have become a critical component in modern VLSI systems. They occupy a large portion of area and accounts for a major component of power consumption in today’s VLSI circuits. In this paper we intend to analyse the performance of a traditional 6T SRAM cell of 16nm Complementary Metal Oxide Semiconductor (CMOS) technology with change in Operating Voltage and Temperature. Aim: The aim of the paper is to study the effect of the SNM dependencies on the operating voltage and temperature Approach: Conventional 6T SRAM are designed using predictive technology model developed by Arizona State University [2] of 16nm planar Low Power CMOS and variation of SNM with operating voltage and temperature are simulated and studied using hspice. Findings: Variations in the operating voltages and temperature strongly impact the stability of an SRAM cell at 16nm. Comparative study is done for predictive 16nm based conventional 6T SRAM cell by varying operating voltage and temperature. A methodology to select operating voltage is suggested which can be used in an early stage of a design cycle to optimise stability margins in nanometer regime KeywordsSRAM, Static Noise Margin, operating voltage, temperature

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

12th Int'l Symposium on Quality Electronic Design

Bias Temperature Instability (BTI) causes significant threshold voltage shift in MOSFET using Hafnium-dioxide (HfO2) High-k dielectric material. Negative BTI and Positive BTI are two types of BTI effects observed in p-channel and n-channel MOSFET. BTI affects the stability and reliability of conventional six transistor (6T) SRAM design in nano-scale CMOS technology. Eight transistor (8T) and Te...

متن کامل

Study of Variability in Advanced Transistor Technologies

As transistor dimensions are scaled down in accordance with Moore's Law to provide for improved performance and cost per function, variability in transistor performance grows in significance and can present a major challenge for achieving high yield in the manufacture of integrated circuits utilizing transistors with sub-30 nm gate lengths. Increased variability in the threshold voltage (V T) o...

متن کامل

Impact Analysis of NBTI/PBTI on SRAM VMIN and Design Techniques for Improved SRAM VMIN

Negative bias temperature instability (NBTI) and positive bias temperature instability (PBTI) are critical circuit reliability issues in highly scaled CMOS technologies. In this paper, we analyze the impacts of NBTI and PBTI on SRAM VMIN, and present a design solution for mitigating the impact of NBTI and PBTI on SRAM VMIN. Two different types of SRAM VMIN (SNM-limited VMIN and time-limited VMI...

متن کامل

Incorporating Effects of Process, Voltage, and Temperature Variation in BTI Model for Circuit Design

Bias Temperature Instability (BTI) is a major reliability issue in Nano-scale CMOS circuits. BTI effect results in the threshold voltage increase of MOS devices over time. Given the Process, Voltage, and Temperature (PVT) dependence of BTI effect, and the significant amount of PVT variations in Nano-scale CMOS, we propose a method of combining the effects of PVT variations and the BTI effect fo...

متن کامل

Comparative Analysis of Sram Cell Designs in Nano-scale Technology

Bias Temperature Instability (BTI) is a major reliability issue in Nano-Scale CMOS circuits. BTI effect results in the threshold voltage increase of MOS devices over time. Given the Process, Voltage, and Temperature (PVT) dependence of BTI effect, and the significant amount of PVT variations in Nano-scale CMOS, we propose a method of combining the effects of PVT variations and the BTI effect fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013